3D printing will revolutionise titanium manufacturing

Titanium is already widely used in aerospace applications, but advances in 3D printing technology mean that it’s now feasible to produce titanium components in geometries and timeframes not previously possible.

In this article, I will discuss the benefits of using titanium in aerospace engineering, and how 3D printing is already changing how companies like General Electric are manufacturing components.

Current titanium usage

Classified as a transitional metal, titanium possesses characteristics in its natural state that make it useful for certain aerospace applications, such as strength, corrosion resistance, heat resistance, machinability, toughness, creep resistance and favourable fatigue properties. It possesses roughly the same strength as steel while being much lighter, and can absorb large amounts of energy per unit volume. It can be machined, and while it requires tougher tooling than aluminium (for example), its increased strength means that it can withstand deformation under sustained load and elevated temperatures. It is resistant to both very high and cryogenic temperatures, and is ideal for environments that experience extreme temperature fluctuations.

Examples of aerospace applications that currently use titanium include: landing gears, where its high strength-to-weight ratio and fatigue resistance are unmatched; jet engines, where extreme mechanical stresses and temperature fluctuations require a variety of titanium alloys; and rockets, missiles and space applications, where the weight limitations, vibrations during launch and high g-force loads make titanium an ideal material for certain components.

Digital manufacturing

Digital manufacturing is the term being used for the technology that employs 3D printing for metallurgical consolidation. Wire-based 3D printing focuses on creating near-net shapes involved in close die forgings. For titanium-based 3D printing, though, powder is generally preferred as the feedstock material, especially for smaller parts and more complex geometries.

In general, 3D printed parts are economically attractive for relatively small production runs, while larger runs favour traditional manufacturing methods such as close die forging or investment casting. The traditional manufacturing methods involve a considerable initial investment in dies or moulds, which are difficult to amortize when only a small number of units are required.

3D printing advancements now enable virtually any geometry to be produced, many of which would be impossible using other manufacturing processes. Consequently, new design possibilities are available, such as to further optimise aircraft component designs and significantly reduce weight. In most cases, the design engineer no longer needs to design while keeping tooling / machine limitations in mind.

As 3D printing technology continues to develop, larger production runs will soon be possible, and add further weight to the argument for using 3D printing ahead of traditional manufacturing techniques.

Powder acquisition

3D printing using titanium requires a two-step process: powder acquisition, and metallurgical consolidation by additive manufacturing.

Two basic approaches exist to obtain titanium powder, known as the ‘blended elemental’ approach and the ‘pre-alloying’ approach. The ‘blended elemental’ method involves the blending of (virtually) pure titanium with alloying elements, while ‘pre-alloying’ uses solid scrap, billets or machined turnings as feedstock.

The powder that needs to be produced must be fine and semi-spherical, to allow a higher packing density and low porosity, which results in stronger components and better fatigue properties. The powder particles must be compositionally homogenous and relatively uniform in size. As a general rule, aerospace applications will use relatively small particles, between 50 and 150 microns. Smaller particles afford smoother finishes, which is especially important to prevent crack growth. However, smaller particles are more difficult to manage and have much lower deposition rates.

Some aerospace-relevant powder acquisition methods are PREP (Plasma Rotating Electrode Process), TGA / VIM (Titanium Gas Atomization / Vacuum Induction Melting), and PA (Plasma Atomization).

3D printing

Also known as ‘additive manufacturing’, 3D printing is suitable for synthesizing three-dimensional objects with a wide range of materials. There are various technologies currently in development, but each currently share the following common characteristics:

  • Parts are constructed in a layered fashion.
  • Material is added to produce the final product, instead of subtracting material from castings or billets through milling or machining (hence the term ‘additive manufacturing’).
  • An energy or heat source is required to fuse the particles together (such as a laser or electron beam).

In the aerospace industry, the primary additive manufacturing processes being developed are laser-based or electron beam-based, and include techniques known as ‘Selective Laser Sintering’ (SLS), ‘Selective Laser Melting’ (SLM), ‘Direct Metal Laser Sintering’ (DMLS), and ‘Electron Beam Melting’ (EBM).

In terms of using titanium in 3D printing, EBM appears to offer the greatest benefits. In contrast to laser-based methods, with EBM the part is constructed under vacuum. This makes it particularly suitable for use with titanium, since the metal has a high affinity for oxygen, which may lead to unfavourable characteristics of the end product. Moreover, titanium powder is highly combustible, and the inert environment helps to significantly reduce the risk of explosion / fire.

The EBM process typically uses pre-alloyed material, and involves a higher energy density than with SLS, resulting in a higher build rate. High quality, dense parts without porosity can be produced.

3D printed titanium component

Industry example: GE fuel injection nozzle

In aerospace, safety is of paramount importance. Consequently, when implementing new technologies, a conservative approach is needed.

When applied to the technologies discussed here, this means that we tend to go from non-load carrying elements to elements or structures that are statically-loaded, and from there to dynamically-loaded structures that may be fatigue critical.

General Electric has developed a 3D printed fuel injection nozzle for application in its LEAP engine. Nineteen of the nozzles are used in the combustion system of the engine.

Benefits of the 3D printed parts include:

  • About 25% weight reduction compared to its predecessor part while still being stronger.
  • A much simpler design, reducing the number of parts from 18 to 1.
  • New design features, allowing more advanced cooling pathways and other improvements.
  • An estimated 5x improvement in durability.

Manufacturing considerations

When using 3D printing with titanium instead of traditional manufacturing techniques, there are a number of things to consider.

In terms of product quality and testing, data regarding the mechanical properties of 3D printed titanium parts are not readily available, although not completely non-existent. In general, 3D manufactured parts cannot currently match the mechanical performance of conventionally manufactured counterparts, but this will change over time as development continues.

Titanium powder is flammable and sensitive to electrostatic charges, and can also be harmful if inhaled. As a result, precautionary measures must be in place when handling the material, including safe storage techniques, using anti-static handling measures, maintaining a safe perimeter around equipment to protect from heat- and spark-generating processes, and special fire extinguishing media.

Titanium is an expensive material in its own right; roughly speaking, it is around six times as expensive as steel. It is not traded on the London Metal Exchange, and there is a tendency for considerable price fluctuations, which results from the fact that over 40% of titanium is used in aerospace and is closely linked to the value of the aerospace industry as a whole.

Titanium powder is still very expensive, currently valued at around 600 USD per kg. Curiously, most titanium powder is produced within the US, while most 3D printing machines are produced in Europe.

Closing thoughts

Clearly, additive manufacturing technologies are still maturing, and as the technology develops, 3D printers will become more economical. In time, both quality – particularly process repeatability – and cost will improve to firmly challenge conventional manufacturing methods.

3D printing with titanium can yield a very high raw material to product conversion rate, and means that highly complex geometries, which may not otherwise be possible using traditional manufacturing techniques, can be produced relatively easily, without needing bespoke tooling. There is greater design flexibility with potential for weight savings, and the possibility for reducing complexity in the manufacture process by reducing the number of parts and associated joints.

Quality, or consistency thereof, is still an issue, and mechanical properties of the end products are still insufficiently known or characterised. The production rate is currently slow and the processes for certification and qualification are still in development. The costs of the material and manufacturing are still very high. However, the technology is improving rapidly, the available data is increasing quickly, and costs will continue to decrease and permit wider adoption.

You can connect with Chris van Dam on LinkedIn, and find out more about his company Airborne Metals by visiting their website: airbornemetals.com

About the author

Latest articles

Featured article
  • Should you consider B2B ecommerce payments?

    Should you consider B2B ecommerce payments?

    In the past, many believed that B2B products were too complicated to be sold online and buyers would not trust making high-value purchases through the internet. Physical sales relationships were seen as the only way to establish the trust required for B2B transactions. However, the digital age has significantly influenced the B2B research and buying…

    Read article →

  • Van Leeuwen: The Energy Project

    Van Leeuwen: The Energy Project

    In December 2021 Jill Clements told me about the Energy Project that had been signed off by Van Leeuwen UK. Jill was animated when talking about the news, and excitedly explained the potential that this opened up to her and the team. “I am very excited about it. I am really happy that finally we…

    Read article →

  • Drywall Steel Sections Secures £9.5 Million WMCA Investment

    Drywall Steel Sections Secures £9.5 Million WMCA Investment

    £13 million was all it took for a family run manufacturing business to make a monumental transformation in the historic heart of the steel industry! Drywall Steel Sections Ltd are on the move after securing loan funding of £9.5 million from the West Midlands Combined Authority (WMCA). Their Cradley Heath site was no longer fit…

    Read article →

  • The NASS Golf day & Summer Gathering 2023

    The NASS Golf day & Summer Gathering 2023

    On the 29th of June, Matt Tipper, Stewart Andrews and I had a swing of the clubs at Priory Breadsall in Derby. A week later, on the 6th of July, I attended the Summer Gathering in central Birmingham. Two entirely different events, seven days apart, both hosted by The National Association of Steel Service Centres…

    Read article →

  • The Stainless Steel Industry Meets at the BSSA Annual Conference & Dinner

    The Stainless Steel Industry Meets at the BSSA Annual Conference & Dinner

    The British Stainless Steel Association (BSSA) met at The Grand Hotel in Birmingham in May 2023 for their annual conference and dinner. Having attended the last four BSSA annual conferences and this year’s Food and Beverage Industry event (link to article), it was great to catch up with familiar faces from the industry and new…

    Read article →

  • Q2 Review: Analysing The Recruitment Landscape

    Q2 Review: Analysing The Recruitment Landscape

    Large corporate companies are facing challenges attracting new talent and retaining skilled staff especially when their salary structures, work flexibility and staff benefits are outdated compared to smaller, more agile SMEs. Smaller companies can have the advantage of being able to offer more flexibility and quicker decision-making, meaning they’re a more appealing option for certain…

    Read article →

  • How to use LinkedIn for YOUR Metal Business.

    How to use LinkedIn for YOUR Metal Business.

    The below presentation was given at the National Association of Steel Service Centres (NASS) 2023 Summer Gathering. In 12 days I’ll have been using LinkedIn for 12 years! On the day I joined I thought: “Wow! This business Facebook thingy is incredible! Everyone I want to do business with is right here, this will be…

    Read article →

  • Leading the Charge: Steel Dynamics in the Nuclear Industry

    Leading the Charge: Steel Dynamics in the Nuclear Industry

    Chancellor Rishi Sunak recently unveiled the Great British Nuclear initiative, marking a significant milestone in the UK’s pursuit of a sustainable energy future. With nuclear power playing a crucialrole in achieving net-zero emissions and reducing greenhouse gases, this announcement signals a remarkable leap forward in the nation’s commitment to clean and reliable energy sources. The…

    Read article →

  • Steel Dynamics Group Ltd. Acquires Ferrari Stainless & Alloys.

    Steel Dynamics Group Ltd. Acquires Ferrari Stainless & Alloys.

    Steel Dynamics Group Ltd. Acquires Ferrari Stainless & Alloys Ltd. Launching P&P Non Ferrous: A Gateway to Enhanced Customer Services and Expansion Down South In a strategic move to bolster its position in the industry, Steel Dynamics Group Ltd. proudly announces the successful acquisition of Ferrari Stainless & Alloys Ltd. in Wimborne. This transformative development…

    Read article →

  • Sustainability is key to modern manufacturing

    Sustainability is key to modern manufacturing

    During my time supplying specialist metals into the manufacturing sector, I have noticed several things regarding the supply chain local to me in South Yorkshire. 1 Large Manufacturing companies often have difficult onboarding processes.  This makes it difficult for smaller SMES or new market entrants to be able to supply them. 2 Manufacturing companies are…

    Read article →

  • Lasers: The Tesla of Tooling

    Lasers: The Tesla of Tooling

    Welcome back, I’m LaserEd, and I work with lasers. I’ll be laser-educating for The Metal Magazine and I hope it results in more metal parts being lasered! First of all, I haven’t had an accident after writing my last article about Laser Safety. I have been busy researching. Although it is time consuming, I love…

    Read article →

  • Implementing QMS Certifications for Small Businesses and Start-Up Companies

    Implementing QMS Certifications for Small Businesses and Start-Up Companies

    Welcome to the fourth and final instalment of this short series on Quality Management System certification for small businesses and start-up companies. In this 4 part series I have been explaining exactly what third-party certification involves, and how you can level up your business through this process. The standard we are focussing on is ISO9001:2015, as…

    Read article →

  • Net zero carbon does not mean zero!

    Net zero carbon does not mean zero!

    Task 2 of the SUSTAIN project focuses on recycling the non-recyclable waste from the steelmaking process.

    Read article →

Get notified when we publish new articles!

Want to feature in the next edition?